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Abstract

NORAD maintains and disseminates mean orbital elements on Earth-orbiting

satellites in the form of Two-Line Element Sets (TLE). Five mathematical propagator

models were developed for NORAD's use to predict the position and velocity using

TLEs. This study investigated two approaches, Newton's method and direct iteration, to

inverting this process by iterating to obtain NORAD-compatible mean orbital elements

from a position and velocity state vector and the drag term. The Newton's iteration

method was developed but not tested. The less computationally intensive direct iteration

method was developed, coded in FORTRAN, and tested. The initial guess and

subsequent corrections in the iterative process used the osculating elements computed

from the state. The results showed the computation of the osculating elements to be

unstable for low-Earth orbits with low eccentricity and moderate inclination, never

converging to a solution for those cases. The scope of this research was limited to using

two of the five propagators: Simplified General Perturbation Version 4 (SGP4) for low

Earth orbits and SDP4 for deep space orbits.
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COMPUTING NORAD MEAN ORBITAL ELEMENTS

FROM A STATE VECTOR

L. INTRODUCTION

1.1 Background.

Under sponsorship of the Joint National Intelligence Defense Staff (JNIDS), the

Air Force Institute of Technology (AFIT) developed Satellite Modeler (SM), a virtual

near-Earth space environment computer application. In individual theses, Captain David

L. Pond and Captain Andrea A. Kunz, in 1992 and 1993 respectively, developed the

application to run on a Silicon Graphics workstation [Pon92] [Kun93]. In its present

form, SM allows interaction with a three-dimensional virtual environment to graphically

visualize orbital motion of Earth-orbiting satellites. The interaction allows the user to

chose individual satellites, constellations, viewpoint, and other graphical depictions, e.g.

satellite orbit trails.

The North American Aerospace Defense Command (NORAD) maintains orbital

data for Earth-orbiting objects. These objects are classified as near-Earth (orbital periods

less than 225 minutes) or deep-space (periods greater than or equal to 225). NORAD

distributes these orbital data to various users in the form of a two-line mean orbital

element set (TLE) for each object. Five mathematical models were developed for

NORAD's use to propagate TLEs forward in time to obtain a position and velocity of the

space object. Together, the three-dimensional position and velocity are referred to as the

state of the object. The five propagation models are based on general perturbation theory

but implement different models for gravitational and drag effects, and also differ in the

manner in which the differential equations of motion are integrated. The Simplified

General Perturbations (SGP), SGP Version 4 (SGP4), and SGP Version 8 (SGP8)
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prediction models are used for near-Earth objects. The deep-space models are SDP4 and

SDP8 [Hoo80]. SM takes as input a NORAD TLE. The state of the satellite is then

propagated forward in time through either SGP4 or SDP4 general perturbation

propagation models.

The National Air Intelligence Center (NAIC) plans to use SM as an analytical

tool, but to do so requires that SM be enhanced to include many additional interactive

modules. The primary additions involve interactive manipulation of the satellite orbit,

modifying the current dynamical state of the satellite through a thrusting maneuver.

NAIC wishes to add the capability of changing the satellite orbit and "flying" this

new orbit for analysis. They propose two general inputs to perform this orbit

modification. The first is to impart a specified maneuvering thrust, either impulsive or

non-impulsive. The second is to specify a subpoint for the satellite to pass over.

The orbit modification can be broken down into two parts, powered and non-

powered flight. The state of the satellite must be propagated through the powered flight

regime by a means other than SGP4 or SDP4, since these models are for satellites under

natural acceleration. For the impulsive maneuver, modification of the state is a matter of

adding the velocity change to the velocity at the maneuver time. The non-impulsive

maneuver is more complex, requiring the inertial position, velocity, and attitude to be

modified throughout the duration of the burn. Propagation through the powered flight

regime requires integrating the equations of motion throughout the duration. After the

maneuver is complete the satellite returns to non-powered natural flight.

SM, using SGP4 and SDP4, takes as input NORAD mean elements along with the

current simulation time and computes the position and velocity of the satellite. Once the

orbit is modified through a thrusting maneuver, the original NORAD elements no longer

describe the satellite's orbit. At this point the new orbit must be propagated forward in

time by means other than the SGP4 or SDP4 model. A numerical integrator could be

1-2



employed to propagate those satellites which have had their original orbits modified by

thrusting maneuvers, but this approach would yield the computational inefficiency of two

different methods of satellite propagation within SM. However, if the NORAD-

compatible mean elements for the modified orbit could be obtained, these could then be

substituted for the original two-line element set and SGP4 or SDP4 could be then

employed for propagation.

In addition to NAIC, many others in the space community use the NORAD

element sets and associated propagation models to predict satellite states forward in time.

Therefore, devising a means of obtaining compatible mean element sets from position

and velocity would have a much broader application to the space community in general.

1.2 Problem Statement.

NAIC, and the space community at large, need a method of obtaining NORAD-

compatible mean orbital elements from a given satellite state vector. The problem is to

take a given set of mean elements, propagate the state forward in time, add an impulsive

maneuver, and compute a NORAD-compatible TLE for the new orbit.

1.3 Scope. The effort of this thesis was concentrated in devising a method for

obtaining NORAD-compatible mean orbital elements for a satellite, given the known

position, velocity, and drag term. Thrusting maneuvers were limited to impulsive. The

drag term was assumed to remain unchanged, which implied small orbit changes. While

the non-impulsive thrust was not addressed, nor was obtaining an orbit which overflies a

specified subpoint, NAIC's future needs for enhancements to SM were kept in mind. A

modular approach was employed which left the prediction routines unmodified.

Although five prediction models exist for NORAD elements, this research dealt

specifically with SGP4 and SDP4, the only prediction models currently used by SM.

1-3



II. DETAILED PROBLEM ANALYSIS AND PREVIOUS WORK

2.1 Overview.

NORAD generates orbital element sets on all Earth-orbiting space objects. These

element sets are general perturbation mean elements constructed by a least squares

estimation from observations of the Space Surveillance Network (SSN). These element

sets are periodically updated and provided to users. A discussion of the NORAD

elements and their published format follows in section 2.2.

In Spacetrack Report No. 3: Models for Propagation of NORAD Element Sets by

Hoots and Roehrich (1980), the introduction emphasizes:

The most irnortant point to be noted is that not just any prediction model
will suffice. The NORAD element sets are "mean" values obtained by
removing periodic variations in a particular way. In order to obtain good
predictions, these periodic variations must be reconstructed (by the
prediction model) in exactly the same way they were removed by NORAD.
[Hoo80: 1]

This implies the reverse, that if prediction is via NORAD propagators, not just any mean

element set will suffice. Therefore, the problem is to obtain mean elements obtained for

the modified orbit ensuring they are compatible with the NORAD prediction routines.

Treating the propagation models as generic vector functions which compute, for a

given time, the satellite state from the mean elements, the routines could each be

represented as

f(TLE, t) = X (2.1)

where f is the prediction model represented as a function, TLE is the vector of orbital

elements in the NORAD Two-Line Element set, t is the time of prediction, and X is the

position-velocity state vector in Earth Centered Inertial (ECI) coordinates.
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To obtain the TLE, this formula needs to be inverted. The inverse of f is needed

which calculates the mean elements from the state. Inverting the complex prediction

routines analytically is difficult and perhaps impossible. However, an iteration technique,

e.g. Newton's multi-dimensional method, could be employed using an initial guess at the

solution then iteratively correcting the guess until a specified convergence criterion is

reached.

2.2 NORAD Mean Orbital Elements.

The six classical Keplerian orbital elements are eccentricity (e), inclination (i),

right ascension of the ascending node (K2), argument of perigee (co), semi-major axis (a),

and time of perigee passage (TO). These six elements describe the orbit and its orientation

in space. With a time specified, the phasing of the object within the orbit can be

determined. In the perfect two-body case, the orbit and its orientation remain constant.

In actuality, the orbit is perturbed by small variations in the orbital elements. The major

perturbations arise from the oblateness of the Earth, atmospheric drag, and lunar and solar

gravitational effects. These perturbations cause periodic and secular variations in the

orbit. NORAD TLEs are mean element sets which have been generated by averaging out

these variations in a specific manner. The TLEs include the first four of the classical

elements, subscripting each with an "o" to denote mean values, but replace the last two

with the mean anomaly (Mo) and the mean motion (n.). A drag term (B*) and two

pseudo drag terms, the first and second time derivatives of mean motion with scale

factors ( fi/2 and ii/6), are also included. These drag terms are used by the prediction

models to account for atmospheric drag effects. The reader is referred to any

introductory orbital mechanics text, e.g. Fundamentals of Astrodynamics by Bate

Mueller and White [Bat71], if unfamiliar with the above orbital elements. The NORAD

two-line element sets are published in ASCII form to outside users in actually three lines
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each. The first line contains a satellite identifier and is not used by the prediction models.

The TLEs also contain the epoch time for the data, as well as additional information that

is not used by the propagators. The exact line by line and column by column format for

the TLE is included in Appendix A.

The elements in the published TLEs are not in the units required by the

propagators and therefore must be converted prior to calling the prediction routines.

Table 2.1 provides the TLE elements and their published units as well as the units used

by the prediction routines.

Table 2.1. Units of TLE

Element Published Units Propagator Units

eo unitless unitless

io degrees radians

_ _ _ _degrees radians

_ _ _degrees radians

Mo degrees radians

no revolutions/day radians/minute

B* Earth-radii- 1  Earth-radii-1

fi/2 revolutions/day2 radians/minute 2

ii/6 revolutions/day 3  radians/minute3
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2.3 Propagation Models.

Five different mathematical satellite prediction models exist for propagating

Earth-orbiting satellites with NORAD mean elements. SGP, SGP4, and SGP8 are models

for near-Earth satellites, while SDP4 and SDP8 are for deep-space satellites.

SM uses SGP4 and SDP4 prediction models. Atmospheric drag is handled via

B*. The pseudo-drag terms hi/2 and ii/6 are used in SGP only and are of no

consequence when predicting orbits with SGP4 or SDP4. SGP4 was developed by

Crawford in 1970. It is a simplification of the analytical theory of Lane and Crawford

(1969). SGP4 uses a power density function for modeling the atmosphere and the

solution of Brouwer (1959) for its gravitational model [Hoo80: 1]. SDP4 was developed

by Hujsak (1979) by extending SGP4 to deep-space orbits. It included gravitational

effects of the sun and moon along with certain sectoral and tesseral Earth harmonics.

These harmonics are significant in accurately predicting the state for half-day and one-

day period orbits [Hoo80: 1]. The reader is referred to Spacetrack Report No. 3: Models

for Propagation of NORAD Element Sets by Hoots and Roehrich (1980) [Hoo8O] for a

detailed discussion of each of these two models as well as the remaining three models and

their differences. In addition, the FORTRAN computer code for each of the five

prediction models and the required subprograms can also be found in Spacetrack Report

No. 3.

2.4 Previous Related Work.

A literature search revealed two previous works which involved obtaining

NORAD-compatible mean orbital elements from a known orbiting satellite state. Both

treat the prediction models as "black-box" functions and iterate to obtain a solution, but

differ in their approach.
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2.4.1 Vector to Two-Line Elements (VEC2TLE) Software. In May of 1994,

Kenneth J. Ernandes copyrighted his Vector to Two-Line Elements (VEC2TLE) Version

9425 shareware software for International Business Machines (IBM) compatible

personal computers using Microsoft Disk Operating System (MSDOS) [Enr94]. It

provides the user with the ability to convert near-Earth position/velocity/time state

vectors in various formats to NORAD-compatible TLEs. It uses SGP or SGP4 prediction

models.

The discovery of Mr. Ernandes' software came late in this research project. Mr.

Emandes, in conversations with this author, understandably displayed concern over

revealing details of his solution technique, wishing to protect his substantial investment in

developing his software. However, when this author discussed his proposed method of

employing Newton's iteration method using numerically calculated partial derivatives

with the osculating orbital elements as an initial guess (discussed later in Chapter I1) Mr.

Ernandes replied, "Fundamentally, our techniques are the same."

Mr. Ernandes was willing to make available the computer code provided certain

non-disclosure conditions were met. Attempts to meet his requirements within the time

and funding constraints of this research were not successful.

2.4.2 Conversion of Osculating Elements to Mean Elements. In section 3.4.8 of

NORAD Technical Publication: SPADOC Computation Center Computer Program

Product Specification Mathematical Foundation for SSC Astrodynamic Theory, a general

algorithm is presented for converting osculating elements to mean elements via a direct

iteration scheme using the osculating elements as an initial guess [NOR82: 147]. The

algorithm is implemented in program GP2SP. However, attempts to obtain this computer

code from AFSPC/CNY failed. CNY stated that policy prevented them from releasing

this or any other computer code, other than the five prediction models.
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III DEVELOPMENT OF PROBLEM SOLUTION

3.1 Overview.

A top-level analysis of the problem produced a general algorithm to solve for the

mean elements from a known satellite state and drag term at some given time. The

algorithm called for an iterative approach. Two methods were investigated. Initially,

Newton's multi-dimensional iteration technique was applied analytically as an approach

to converge on a solution. Implementing this approach numerically on a computer posed

complexities which are discussed later in this report. Additional research, discussed in

Section 2.4.2, revealed a simpler method of directly iterating on a solution. Since Mr.

Kenneth J. Emandes' VEC2TLE computer program, discussed in Section 2.4.1, is based

on Newton's method, it was decided to attack the problem from another perspective and

the direct iteration technique was developed and tested. However, it did not provide

convergence in each case. Therefore both approaches are presented as background for

future research.

3.2 General Algorithm

The task was to take a given TLE, propagate forward in time with SGP4 or SDP4,

add an impulsive thrust, and calculate a NORAD-compatible TLE for the new orbit. The

general algorithm developed for computer implementation was as follows:

1) Read in the original TLE and time of thrust application.

2) Convert the elements of the TLE to the internal units used in the propagators.

3) Propagate the state forward to the time of thrust application.

4) Add the impulsive thrusting maneuver (AV) to the velocity of the state.

5) Calculate a first guess at the solution.
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6) Iterate until the desired convergence accuracy is reached.

This research was in the areas of steps 5 and 6 above. With or without the

maneuver in step 4, one must still solve for the mean elements which, when input to the

appropriate prediction model, yield the desired state. The computer algorithm, however,

does allow for an impulsive maneuver, since the problem statement called for it. As will

be seen in later results, it also served as an additional validation of the code to show that

one could modify the state with a thrust, obtain a new TLE, then reverse the process by

negating the thrust and obtain the original TLE.

3.3 Initial Guess.

Both approaches required an initial guess at the solution. At any given time the

actual state vector associated with the true perturbed orbit is identical to the state vector

of the fictitious two-body orbit. Under the theory of General Perturbation, the underlying

theory of SGP, SGP4, SDP4, SGP8, and SDP8, the assumption is that the perturbations

remain small [Wie89-2]. At any particular time, the real orbit and the instantaneous, or

osculating, orbit meet and share the same state vector. Therefore the osculating elements

should provide a close approximation for the first guess at the mean elements in the

iteration scheme.

3.4 Approach 1: Newton's Method [Bur85: 496-509]

A multi-dimensional Newton's iteration method allows one to solve for the root

of a function by expanding the function via a Taylor series. This method is generally

expected to give a quadratic rate of convergence as long as the guess is close to the actual

solution [Bur85: 498].
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3.4.1 Analytic Development. Denoting the prediction routines as a function f as

in equation 2.1, subtracting the actual state from both sides of the equation, and denoting

the left hand side as a new function F, yields:

f(TLE, t)- X = 0 (3.1)

F - f(TLE, t) - X = 0 (3.2)

If instead of TLE some approximation TLE is used, the right hand side of

equation 3.2 will not yield exactly zero but some error, AX, until the correct solution for

TLE is obtained, and even then there will be a precision limit when implementing it on a

digital computer. As in all mathematics performed on a finite-word-length computer, the

iteration should be continued until the AX becomes less than some predefined tolerance.

Since the function f is evaluated at a given time t one can think of the time as

being a constant throughout the iteration. Likewise the drag elements of TLE are either

of no consequence when using SGP4 or SDP4, as in the case of hi/2 and ii/6, or, as with

B*, can be assumed to be constant for small thrusting modifications to the orbit, and so

can also be considered as constants within the function f. This reduces the TLE vector to

six elements allowed to vary during the iteration: e0 , io,9 ,c oo, Mo, and no.

Newton's method in solving for the true TLE includes expanding equation 3.2 in

a Taylor series:

F(TLE) = F(ILJE) + (TLE - TLE) J(TLE) + H.O.T. (3.3)

where TLE is the unknown vector of mean elements, TLE is the guess, J is the Jacobian

matrix of F, and H.O.T refers to "higher order terms." Truncating equation 3.3 to first

order and substituting F(TLE) = 0 by definition, equation 3.3 can now be written as:
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F(TLE) + (TLE - TLE) J(TL_ - 0 (3.4)

The approximation sign is, for the rest of the derivation, replaced with an equality sign.

Rearranging equation 3.4 produces:

ATLE = - J'(TL.) F(TLE) (3.5)

where:

ATLE = (TLE - TLE)

Then in iteration notation, the TLE for the kth iteration is calculated from:

ATLE(k'l) = - Jl'(TLE(k'I)) F(TLE(k'l)) (3.6)

TLE(k) = TLE(k-i) + ATLE(k'l) (3.7)

where the superscripts in parentheses denote the iteration number.

3.4.2 Implementation Complexities. The computer code development

encountered some complexities.

A weakness of Newton's method for solving systems of n nonlinear equations is

that the Jacobian matrix must be computed for each iteration and an n x n linear system

solved that involves this matrix. The Jacobian for this problem is the matrix whose n2

elements are the partial derivatives of the function F with respect to the elements of TLE.

Analytically, the individual elements of J are:
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J(TLE)ij =I (3.8)DTLEj

where i and j denote the row and column respectively with respect to the Jacobian and the

individual elements of the F and TLE vectors. Since the prediction routines are

complicated computer subroutines, taking the partial derivatives analytically is not

feasible. Therefore they need to be obtained numerically by finite differences. This finite

difference form of the Jacobian for the kth iteration is:

DFi(TLE(k)) Fi(TLE(k) + ýjh) - Fi(TLE(k))
=)LE h(3.9)aTLEj h

where h is small in absolute value and 4j is the vector whose only nonzero entry is a one

in the jth coordinate. For this case (n=6), seven calls to the propagator are required for

each iteration: one to evaluate F and six to approximate the Jacobian matrix. There are

quasi-Newton techniques one can employ to reduce the number of computations per

iteration by replacing the Jacobian matrix with an approximation that is updated at each

iteration. These methods, however, have disadvantages. Newton's method is self

correcting where quasi-Newton methods are not. Newton's method will generally correct

for round-off error with successive iterations, quasi-Newton methods will not. Another

disadvantage is that the quadratic convergence of Newton's method is replaced with

superlinear convergence when modified by the techniques of the quasi-Newton methods

[Bur85: 504, 505].

In addition to the number of computations required for Newton's method,

implementing equation 3.9 required determining a suitable h to capture the slope
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information for all orbits. The large dynamic range in values of the different orbital

elements meant different values of h were required.

Due to the complexity in implementing this approach, coupled with the loss of

convergence speed, a linearly converging direct iteration approach was developed and

tested as an alternative approach. It was also felt that since Mr. Kenneth J. Ernandes'

VEC2TLE computer program, discussed in Section 2.4.1, was based on Newton's

method, a different approach might yield additional insight to the problem.

3.5 Approach 2: Direct Iteration.

As stated earlier in this report, the AFSPC/CNY-controlled program GP2SP

implements a direct iteration algorithm for solving the mean elements, using the

osculating elements as a first guess. The only convergence criterion used is the mean

motion since: "This is the most important element when predicting into the future"

[NOR82]. Rather than converging on one element, the decision was made to iterate until

all elements of the state vector were within the desired accuracy tolerance, e. The direct

iteration algorithm implemented for this research was as follows:

1) Start with the osculating elements corresponding to the true state as the initial

guess for the mean elements.

2) Determine the prediction model based on the orbital period.

3) Calculate the state vector associated with these elements with the selected

prediction model.

4) Correct the mean elements by approximating the correction with the change in

the osculating elements between the current iteration step and the last. The

new guess for the mean elements becomes the last guess plus this correction.
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3) Return to step 2 and repeat until the change in the state of two successive steps

is less than or equal to E.

3.6 Computer Code Implementation.

The general algorithm was implemented in FORTRAN and run on a SUN

workstation. SM is written in C and C++ but NAIC, and the space community at large,

have several other potential target applications for this research based on FORTRAN so

the decision was made to code in FORTRAN and translate it into C++ and implement it

into SM at a later date. The scope of this research was to develop the procedure only.

The procedure for obtaining the mean elements for an orbit which undergoes a AV

at some time equal to or greater than the TLE epoch follows:

1) Read in data: TLE, maneuver time t, AV, and F.

2) Convert units to those used internally by the prediction models.

3) Determine the state vector X at time t via the appropriate propagator.

4) Add the AV to the state: X = X + AV.

5) Set the new epoch time to t.

6) Calculate the osculating elements, Y, associated with the modified state.

7) Let TLE(0) = Y. The value of B* remains as its original value in TLE.

8) Determine the appropriate prediction model based on the orbital period.

9) Calculate the state from the appropriate prediction model: X(i) = f(TLE(i))

10) AX (i) = X - X(i) .

11) Calculate the associated yi) from X(i).

12) ATLE(i) Y Y - y(i)

13) If AX(i) _ s then stop the iteration and assign TLE = TLE(i).

14) Else TLE(i+l) = TLE(i) + ATLE(i), increment i and return to step 8.
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In addition to the above, provisions in the computer code were made to propagate

forward in time the orbit once the mean element set had converged, if the user so desires.

This feature is contained within the main DRIVER program of Space Track Report No. 3

and was included in the DRIVER program of this research project for testing purposes

and validation of test cases.

A subroutine for computing the osculating elements from a state vector was

written combining methods from NORAD TP SSC 008; the works of Wiesel (1989); and

Bate, Mueller, and White (1971) [NOR82; Wie89; Bat71]. The FORTRAN code can be

found in Appendix B.

3.7 Computer Code Validation.

The FORTRAN code for the prediction models, SGP4 and SDP4, was obtained

from Space Track Report No. 3 and used without modification. However, a compiler

option was set to declare all real variables as double precision variables. Initial validation

of the prediction models was made to ensure that the results of the test cases within Space

Track Report No. 3 could be reproduced. Those results were reproduced allowing for the

difference in precision.

The subprogram RV2OSC, used to compute the osculating elements from the

state, was validated with several test cases from textbook examples and previous

coursework.

Two methods were employed for validating the algorithm developed for this

research. The first was to input a TLE and propagate the state without adding a AV, then

iterate to see if convergence to the original TLE was obtained. The second method was

to modify the state vector with a AV, iterate to get a new TLE, then using this newly

obtained TLE, repeat the procedure negating the AV and iterate to see if the original TLE

was produced. Both validation methods were successful.
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3.8 Data Runs.

Thirty data sets were run using a variety of orbits. Both near-Earth and deep-

space orbits were utilized, as were orbits with low eccentricity, high eccentricity, low

inclination, moderate inclination, and near-polar inclination. The data sets and the

associated results of these runs are detailed in the following chapter.
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IV. RESULTS

4.1 General Overview of Results.

Fifteen initial data sets with varying orbital parameters were run. The

convergence criteria used were one centimeter in position and one centimeter per second

in velocity. The number of iterations required to reach convergence ranged from four to

175. Out of the 15 runs, four failed to converge. Initially a larger portion of the cases

failed to converge and run time errors occurred. Further detailed software testing

revealed that in certain cases, the initial guess calculated for the eccentricity was far

enough from the actual value that the correction produced a negative value that increased,

in absolute value, with each iteration. Once the divergence of the eccentricity produced

an absolute value greater than unity the prediction models yielded errors trying to

perform operations which are undefined with such values. Within the correction step of

the iteration portion of the DRIVER program, the eccentricity was forced to be non-

negative. This corrected all previously non-converging cases except for cases 6,7,8, and

10.

Table 4.1 is a summary of the results. The values in the table have been rounded

off to aid in readability.
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Table 4.1. Initial Results Overview For Runs 1 - 11

Argument of Mean I Mean Prediction Number of
Run Satellite Inclination Node Eccentricity Perigee Anamoly' (see notel- ) Motion Model Iterations

1 73 116 0.00867 53 111 163 16 SGP4 8
la 73 116 0.00867 53 111 163 16 SGP4 4
lb 73 116 0.20658 161 2 163 11 SGP4 8
2 47 230 0.73180 47 10 58 2 SDP4 4
2a 47 230 0.73180 47 10 58 2 SDP4 4
2b 47 230 0.57356 29 30 59 5 SDP4 4
3 TDRS4 0 252 0.00008 191 311 502 1 SDP4 114
4 CRRES 18 246 0.71975 83 347 429 2 SDP4 4
5 SPOT 1 99 104 0.00006 84 276 360 14 SGP4 175
6 Mir 52 171 0.00044 243 117 360 16 SGP4 Did.NOT.Cone

7 Kvant-l 52 176 0.00043 248 112 360 16 SGP4 Did NOT Converge
8 EUVE 28 276 0.00105 240 120 360 15 SGP4 Did NOT Convmrge
9 PrognsM17 52 153 0.00630 192 168 360 16 SGP4 8
10 HSTArray 28 77 0.00050 183 177 360 15 SGP4 Did NOT Converge
11 1994004A 67 82 0.00341 164 196 360 16 SGP4 15

All angles in degrees. Mean motion in revolutions per day.
note 1: Summation of two preceding column entries.

4.2 Detailed Results.

The TLEs used in the first 6 cases were taken from two test cases in Space Track

Report No. 3 [Hoo80]. The TLEs of runs 3 through 11 were taken from actual published

NORAD element sets. Runs 1, la, lb, 2, 2a, 2b, 3, 4, 5, 9, and 11 converged while 6, 7,

8, and 10 did not.

4.2.1 Validation Runs. Runs 1, la, lb, 2, 2a, and 2b were taken from the test

cases of Space Track Report No. 3 and used to show that a AV could be added to the

state to obtain a new TLE then, by negating the maneuver, one could return to the

original TLE. The report provided one test case for each of the five prediction models.

The data used in Run 1 were from the test case for SGP4 and Run 2 was from the test

case for SDP4. Run 1 converged on the original TLE using the iteration scheme starting

with the initial guess of the osculating elements computed from the state vector. Run la

took the state from Run 1, added a 10% AV in all three directions and computed a new
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TLE. Run lb reversed the process by using the new TLE of la: by negating the previous

AV, the original TLE was converged upon. The deep-space runs of 2, 2a, and 2b were

analogous to 1, la, and lb except a negative 10% AV was applied.

4.2.2 Converging Cases. Runs 3, 4, and 5 converged in 114, 4, and 175 iterations

respectively. Runs 3 and 5 were orbits of low eccentricity (on the order of 10-5) and

therefore computing the osculating elements at each step produced poor guesses close to

the zero eccentricity singularity. Run 4 had an eccentricity on the order of 10-1 and

converged much faster due to more stable osculating element computations.

Runs 9 and 11 were for near-Earth satellite orbits of moderate inclination, 52 and

67 degrees respectively, and eccentricity on the order of 10-3. Convergence was in 8 and

15 iterations respectively.

Most of the runs converged in four to eight iterations. Interactively running the

computer program on these cases, results were returned in less than one second actual

elapsed time. Case 5 was at the extreme, taking 175 iterations to converge to the

specified tolerance. Even this case returned results within four seconds total elapsed

time.

4.2.3 Non-converging Cases. Cases 6, 7, 8, and 10 never converged. The errors

for these runs came within five kilometers for position and three meters per second for

velocity, not the one centimeter for position and one centimeter per second for velocity

convergence criteria. Runs 6 and 7 were for the Mir and Kvant- 1 respectively. These

had moderate 52 degree inclinations and low eccentricities of approximately 4 x 104.

Runs 8 and 10 were of lower inclinations of approximately 28 degrees. The eccentricities

of these cases were 1 x 10-4 and 5 x 10-3 respectively. In all the cases that failed to

converge the sums of coo and Mo were approximately 360 degrees. Initially this appeared
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to be a point of singularity possibly explaining the failure to converge. However, runs 5,

9, and 11 also had these same angle summations and yet those cases converged. An

analysis of the output values for the individual iterations of the non-converging cases

showed either COo and Mo would approach the extremes of one going toward 360 degrees

and the other going to zero or wildly swinging throughout the orbit plane.

4.2.4 Additional Testing for the Non-converging Cases. Further testing was

performed on cases 6, 7, 8, and 10 to try to get them to converge. The hypothesis was

that if one propagated the orbit away from the node, i.e. where coo + Mo = 360 degrees,

and set the new epoch at this future time then one might escape the instability in the

iterations. Additional runs were made for each of the four non-converging cases pushing

the epoch forward in time and away from node crossing. The instability remained and

still convergence was not achieved.

Various AVs were added to each case to see if the orbits could be modified to

where they would converge. In each case, adding a AV which modified the eccentricity

to a value on the order of 10-3 produced an orbit which did converge. The AV required

to do this was approximately 10 m/s. However, reversing the process and negating the

AV failed to converge.

The input data file format and sample data runs for both converging and non-

converging cases can be found in Appendix C.
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V. CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions.

The problem was to take a given set of NORAD mean elements, propagate the

state forward in time with either SGP4 or SDP4 prediction model, add a thrusting

maneuver, and compute NORAD elements for the new orbit. The results in Chapter IV

show that it was possible to obtain the mean elements from the position and velocity

state, using the original B* drag term, with the direct iteration method described in

chapter III, but not for all orbits when accuracy of one centimeter in position and one

centimeter per second in velocity was desired. Convergence to this accuracy was never

achieved for four of the 15 initial data runs. The failed runs all had in common that the

sum of the argument of perigee and mean anomaly was approximately 360 degrees, i.e. at

node crossing. It is a standard practice to place the epoch at the node crossing. However,

for some orbits with such an angle sum the approach did yield the correct solution.

Additional testing on the failed runs showed that even when the orbits were propagated

forward away from the node crossing, where the sum of the argument of perigee and

mean anomaly was not 360 degrees, the iterations were still unstable and failed to

converge. Low eccentricity of approximately 10-4 appears to be a factor causing the

instability in the method used to calculate the mean elements, as does the inclination. But

low eccentricity by itself does not mean the iteration will not converge. The TLE for

SPOT 1 (Run 3) converged, though taking 175 iterations, with an eccentricity of 0.00006

but the inclination was 99 degrees. The TLE for TDRS4 converged, again taking a large

number of iterations (114), with an eccentricity of 0.00008 and an inclination of nearly

zero degrees. However, runs for orbits of moderate inclination and low eccentricities

failed to converge. When the non-converging cases were modified with AVs to push the

eccentricity to a value on the order of 10-3, they all converged even with the moderate
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inclinations. Therefore it appeared that eccentricity drove the instability at moderate

inclinations and its affect was lessened as the inclinations moved toward zero or 90

degrees, equatorial or polar orbits.

The correction to the mean elements for each iteration was made from the

osculating elements computed from the state provided by the prediction models. The

results showed that the osculating elements were not always good enough approximations

to yield convergence.

The computer program developed for this research was not completely optimized

for execution speed. Nonetheless, most runs executed in less than one second actual

elapsed time running on the Sun workstation, while the case requiring the most iterations

still executed in less than four seconds. Optimizing the code and running it on the much

faster Silicon Graphics workstation should provide near instantaneous execution.

5.2 Recommendations for Future Research.

As the work progressed during this research project it became apparent that the

problem solution is one which has great potential in space operations/analysis and yet is a

substantial problem to solve for all cases. In order to solve this problem entirely,

extensions to this research are needed. The following are recommendations for six areas

of future research related to this topic.

5.2.1 Additional Testing. Additional testing needs to be performed to more

clearly define for which types of orbits the algorithm does not converge. The code

developed for this project should be modified to batch process files containing many

TLEs. The results, for both converging and non-converging cases, should be output in a

format which could be graphically analyzed. For the non-converging cases, the orbital

elements of each iteration could be plotted to see if any patterns emerge which might help

to force convergence.
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5.2.2 Expanding to Include SGP, SGP8, and SDP8. This research used only

SGP4 and SDP4 prediction models. Future work should expand on this research to

include the other three propagators, SGP, SGP8, and SDP8.

5.2.3 Obtaining Osculating Elements. The approach was based on the General

Perturbation theory assumption that the osculating elements would provide a close

approximation to the mean elements. This was found to not always be true. Low

eccentricity and/or inclinations close to zero or 180 degrees produce unstable results

when numerically computing Keplerian elements. These are points of singularity for

computing the classical elements from position and velocity [Wie89-2].

One possible approach to avoid these singularities is to use an alternate form of

the classical Keplerian elements, e.g. equinoctal elements, in the transformation from

position and velocity. Equinoctal elements are free from the singularities of zero

eccentricity or inclinations of zero or 180 degrees [Wie89-2: 22]. This may provide a

more accurate transformation of position and velocity to orbital elements. However, the

equinoctal elements must still be converted to the classical elements used by the

prediction models.

Another candidate approach is to try to extract the osculating elements directly

from the prediction models themselves rather than computing them with a separate

routine. The scope of this research was to treat the models as "black box" functions. It

was required to peer inside the models themselves only to gain a general understanding

and also to determine the units of input variables and reassignment of variables within

common blocks. The models were used unmodified. Internally, the propagators

calculate partially osculating elements, adding back in periodic variations, in order to

compute the state. Detailed analysis may reveal that, with modifications to the
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propagators, better calculations of the osculating elements themselves could be obtained

than by RV2OSC. These modifications, however, would negate the modularity that was

sought after in this research project.

Lastly, research into developing another method of obtaining an initial guess and

correcting the mean elements other than using the osculating elements might prove

useful.

5.2.4 Newton's Method. In theory, implementing Newton's method as discussed

in Chapter III would provide faster convergence. This comes from utilizing the rates of

change rather than just the changes in the function for which the root is sought.

However, this method is more complex and computationally intensive It necessitates

seven propagator calls and solving a 6 x 6 linear system of equations for each iteration.

Admittedly, a 6 x 6 system can be solved very rapidly on a computer and should not add

any significant time to execution.

The application of Newton's method to this problem also eliminates the need to

compute the osculating elements at each iteration step. The corrections to the mean

elements can be expressed in terms of the Jacobian of the function and changes in

position and velocity.

If future work were to implement Newton's method and include SGP, another

problem would present itself. Since SGP uses two pseudo-drag terms rather than the one

term used by the other four propagators, the input to the function is a set of seven

elements allowed to change where the output, the state, is only six. This creates a non-

square Jacobian matrix which needs to be inverted. A method would need to be devised

to solve this situation.
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5.2.5 Optimization and Extensions of the Computer Program. The computer

program developed for this research was intended as a research tool only. If, in the

future, a method is developed which converges even for the cases which, in this project,

did not, a computer program should be developed and made available to interested users

within the space community. The code should be optimized for speed and an interface

provided which checks input for data which may cause runtime errors.

The FORTRAN source code for the propagators used in this research was written

to be compatible with FORTRAN IV. This source code could be updated to FORTRAN

77 and further optimized. Ports could be made to C and C++ taking advantage of the

advanced data structures offered by these languages. Likewise, NAIC still needs a

solution implemented into SM in C++.

5.2.6 Drag Estimation. The method implemented in this project showed a way to

take the position and velocity of an Earth-orbiting satellite and compute NORAD-

compatible mean elements, as long as the drag term, B*, was known. An extension of

this would be to compute, from just the state, the mean elements and the drag terms: fi/2

and ii/6 in SGP, and B* in SGP4, SDP4, SGP8, and SDP8. Future research on satellite

drag and methods of estimating the drag would be valuable. Since the drag term is a

function of the physical geometry as well as atmospheric conditions, some aspects of the

satellites' physical characteristics would be needed. However, a parametric analysis of

how the drag terms affect the propagators' computations of the state might reveal

information that could be utilized to approximate and converge on a solution.
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Appendix A: NORAD TWO-IUNE ELEMENTS

NORAD maintains orbital data for each Earth-orbiting satellite in a Two-Line Orbital

Element Set (TLE). These TLEs are made available to users within the space community

in an ASCII file format. In this file, a line is added in front of each TLE with an eleven

character name. The three lines of the published NORAD data are in the following

format:

1 NNNNNT NNNNNAAA NNNNN.NNNNNNNN + .NNNNNNNN +NNNNN-N +NNNNN-N N NNNNN

2 NNNNN NNN.NNNN NNN.NNNN NNNNNNN NNN.NNNN NNN.NNNN NN. rr JNNN

Line 0 is an eleven-character name.

Lines 1 and 2 are the standard Two-Line Orbital Element Set Format identical to that

used by NORAD and NASA. The format description is:

Line 1

Column Deardpin

01-01 Line Number of Element Data

03-07 Satellite Number

10-11 International Designator (Last two digits of launch year)

12-14 International Designator (Launch number of the year)

15-17 International Designator (Piece of launch)

19-20 Epoch Year (Last two digits of year)

21-32 Epoch (Julian Day and fractional portion of the day)
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34-43 One Half the First Time Derivative of the Mean Motion or Ballistic Coefficient (Depending

on ephemeris type)

45-52 One Sixth the Second Time Derivative of Mean Motion (decimal point assumed; blank if

N/A)

54-61 BSTAR drag term if GP4 general perturbation theory was used. Otherwise, radiation pressure

coefficient. (Decimal point assumed)

63-63 Ephemeris type

65-68 Element number

69-69 Check Sum (Modulo 10) (Letters, blanks, periods, plus signs = 0; minus signs = 1)

Line 2

Column Descrption

01-01 Line Number of Element Data

03-07 Satellite Number

09-16 Inclination [Degrees]

18-25 Right Ascension of the Ascending Node [Degrees]

27-33 Eccentricity (decimal point assumed)

35-42 Argument of Perigee [Degrees]

44-51 Mean Anomaly [Degrees]

53-63 Mean Motion [Revs per day]

64-68 Revolution number at epoch [Revs]

69-69 Check Sum (Modulo 10)

All other columns are blank or fixed.
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Example:

NOAA 6

1 11416U 86 50.28438588 0.00000140 67960-4 0 5293

2 11416 98.5105 69.3305 0012788 63.2828 296.9658 14.24899292346978
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Appendix B: COMPUTER CODE AND SUBPROGRAMS

* DRIVER OCT 94

PROGRAM DRIVER

* WGS-72 PHYSICAL AMD GEOPaI'ENTIAL CONSTANTS
*CK2= .5*J2*AE**2 CK4=-.375*J4*AE**4

DOUBLE PRECISION EPYR, EPDAY, DS, YS,EPOCH,DS5O,MXDEL1,MXDEL2
DIMENSION DELTA (6)
CaqON/E1/XMO,XN~ODEO,OMEGAO,EO,XINCL,XNO,XNDT2O,XNDD6O,B3STAR,

1 X,Y,Z,XDOT,YDCar,ZDOT,EPOCH,DS5O
CCMMON/Cl/CK2 ,CK4, E6A,QOMS2T,S,TOTHRD,

1 XJ3 ,XKE,XKMPER,XMNPDA,.AE
COMMON/C2 /DE2RA, PI,PI02, IWOPI ,X3PI02

DATA DE2HA,E6A,PI,PI02,QO,SO,TO'rHRD,ThJOPI,X3PI02,XJ2,XJ3,
1 XJ4,XKE,XKMPER,XMNPDA,AE/.174532925E-1,1.E-6,
2 3.14159265,1.57079633,120.0,78.0,.66666667,
4 6.2831853,4.71238898,1.082616E-3,-.253881E--5,
5 -1.65597E--6,.743669161E-1,6378.135,1440.,1./

CK2=.5*X.J2*AE**2

CK4=-.375*XJ4*AE**4

QaO4S2T= ((QO-SO) *AE/yXflMPER) **4
S=AE* (1.+SO/XKMPER)

* READ IN START TIME & STOP TIME (MIN SINCE EPOCH),
* DELTA V (KM/S),
* AND MEAN ELEMENTS PER NORAD T-TYPE TWO LINE ELEMENT SET

READ(*,*) TS,TF,DELT

READ(*, *) DXDOT,DYDOT,DZDOT
READ(*, *) EPYR,EPDAY,XNUI'20,XNDD6O,BSTAR
READ(*,*) XINCL,XNODEO,EO,GMEGAO,XMO,XNO
READ(*, *) MAXITR,TOL1,TOL2

* ECHO INPUT

WRITE(*,*) 'INPUT ECHO'
WRITE(*, *) -- - - - - - - - -
WRITE(*,*) 'TS: ',TS
WRITE(*,*) 'TF: ',TF
WRITE(*,*) 'DELT: ',DELT
WRITE(*,*) 'DXI2OT: ',DXWOT
WRITE(*,*) 'DYIXYI: ',DYDOT
WRITE(*,*) 'DZDOT: ',DZDOI'
WRITE(*,*) 'EPYR: ',EPYR
WRITE(*,*) 'EPDAY: ',EPDAY
WRITE(*,*) 'X[N]r2O: ',XNDT2O
WRITE(*,*) 'XNDD6O: ',XNDD6O
WRITE(*,*) 'BSTAR: ',BSTAR
WRITE(*,*) 'XINCL: ',XINCL
WRITE(*,*) 'XNODEO: ',XNODEO
WRITE(*,*) 'EO: ',EO

B-i



WRITE (*, *) 'OMEGAO: ',OMEGAO
WRITE(*,*) 'XMO: ',XMO
WRITE(*,*) 'XNO: ',XNO
WRITE(*,*) 'MAXITR: ',MAXITR
WRITE(*,*) 'TOLl: ',TOLl
WRITE(*,*) 'TOL2: ',TOL2
WRITE(*, *)

• CONVERT TO INTERNAL UNITS:
*

• EPOCH: YYDDD.DDDDDDDD
* YY: LAST 2 DIGITS OF YEAR (ASSUMES 20TH CENTURY)
* DDD.DDDDDDDD: JULIAN DAY
*

* TIME IN MINUTES
* DISTANCE IN EARTH RADII

EPOCH= (EPYR) *1000. +EPDAY
XNODEO=XNODEO*DE2RA
OMEGAO=OMEGAO*DE2RA
XMO=XMO*DE2RA
XINCL=XINCL*DE2RA
TEMP=TWOPI/XMNPDA/XMNPDA
XNO=XNO*TEMP*XMNPDA
XNDT20=XNDT20*TEMP
XNDD60=-XNDD60*TEMP/XMNPDA
BSTAR=BSTAR/AE
TEMP=XKMPER/AE*XMNPDA/86400.
DXDOT=DXDOT/TEMP
DYDOT=DYDOT/TEMP
DZDOT=DZDOT/TEMP

INITIALIZE IDEEP TO 0, IE PERIOD < 225 MINUTES
IF PERIOD >= 225 MINUTES THEN SET IDEEP TO 1

IDEEP=0
AI= (XKE/XNO) **TOTHRD
TEMP=1.5*CK2*(3.*COS(XINCL)**2-1.)/(i.-EO*EO)**1.5
DEL1=TEMP/(AI*AI)
AO=-AI*(I.-DEL1*(.5*TOTHRD+DEL1*(i.+134./81.*DELl)))
DELO=TEMP/(AO*AO)
XNODP=XNO/(I. +DELO)
IF((TWOPI/XNODP/XMNPDA) .GE. .15625) IDEEP=I

TSINCE=TS
IFLAG=I

PROPAGATE STATE TO TS, I.E., DELTA V TIME

IF (IDEEP.EQ.0) THEN
CALL SGP4 (IFLAG,TSINCE)

ELSE
CALL SDP4 (IFLAG,TSINCE)

ENDIF

* OUTPUT THE STATE BEFORE ADDING DELTA V
* IN UNITS OF KM AND KM/S LEAVING INTERNAL
* STATE VALUES IN INTERNAL UNITS

WRITE(*,*) 'STATE W/O DELTA V @ T=EPOCH+',TS,' MINUTES:'
W R IT E (* , * ) -------------- --------------------------- -----
WRITE(*,*) 'EPOCH: ',EPOCH
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WRITE(*,*) 'X (KM): ',X*XKMPER/AE
WRITE(*,*) 'Y (KM): ',Y*XKMPER/AE
WRITE(*,*) 'Z (KM): ',Z*XKMPER/AE
WRITE(*,*) 'XDOT (KM/S) : ',XDOT*XKMPER/AE*XMNPDA/86400.
WRITE(*,*) -YDOT (KM/S): ',YDOT*XKMPER/AE*XMPDA/86400.
WRITE(*,*) 'ZDOT (KM/S) : ',ZDOT*XKMPER/AE*XMNPDA/86400.
WRITE(*, *)

ADD DELTA V

XDOT=XDOT+DXDOT
YDOT=YDOT+DYDOT
ZDOT=ZDOT+DZDOT

ASSIGN TRUE STATE IN INTERNAL UNITS

TX:X
TY=Y
TZ=Z
TXDOT=XDOT
TYDOT=YDOT
TZDOT=ZDOT

* OBTAIN TRUE OSCULATING ELEMENTS FROM TRUE STATE
* TRUE ELEMENTS ARE: TINCL,TNODE,TECC,TOMEGA, TM, TN

* ASSIGN CONVERTED STATE TO EXTERNAL UNITS, KM & KM/S

TEMP=XKMPER/AE
CX=TX*TEMP
CY=TY*TEMP
CZ=TZ*TEMP
TEMP=XKMPER/AE*XMNPDA/8 6400.
CXDOT-=TXDOT*TEMP
CYDOT=TYDOT*TEMP
CZDOT=TZDOT*TEMP

CALL RV2OSC(CX,CY,CZ,CXDOT,CYDOT,CZDOT,TINCL,TNODE,TECC,TOMEGA,
1 TM,TN)

UPDATE NEW EPOCH TO TIME OF MANEUVER

DS=TS/XMNPDA
EPDAY=EPDAY+DS
IF(EPDAY.GE.365.) THEN

YS=AINT(EPDAY/365.)
EPYR=EPYR+YS
EPDAY=MOD (EPDAY, 365.)

ENDIF
EPOCH= (EPYR*1000.) +EPDAY
TSINCE=0.

* OUTPUT THE TRUE STATE AFTER ADDING DELTA V
* IN UNITS OF KM AND KM/S LEAVING INTERNAL
* STATE VALUES IN INTERNAL UNITS

WRITE(*,*) 'TRUE STATE W/ DELTA V @ T = NEW EPOCH'

WRITE(*,*) -
IF(IDEEP.EQ.0) WRITE(*,*) 'MODEL: SGP4'
IF(IDEEP.EQ.1) WRITE(*,*) 'MODEL: SDP4'
WRITE(*,*) 'EPOCH: ',EPOCH
WRITE(*,*) 'X (KM);: ,CX
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WRITE(*,*) 'Y (KM): ',CY
WRITE(*,*) 'Z (KM): ',CZ
WRITE(*,*) 'XDOT (KM/S): ',CXDOT
WRITE(*,*) 'YDOT (KM/S): ',CYDOT
WRITE(*,*) 'ZDOT (KIlS): ',CZDOT
WRITE(*,*) 'INCL (DEGREES): ',TINCL
WRITE(*,*) 'NODE (DEGREES): ',TNODE
WRITE(*,*) 'ECC : ',TECC
WRITE(*,*) 'OMEGA (DEGREES): ',TOMEGA
WRITE(*,*) 'M (DEGREES): ',TM
WRITE(*,*) 'N (DEGREES): ',TN
WRITE(*,*)

• ITERATION SCHEME *

ITER=O
ICONV=0

* INITIALIZE FIRST GUESS @ TLE AS TRUE OSCULATING ELEMENTS

XINCL=TINCL*DE2RA
XNODEO=TNODE*DE2RA
EO=TECC
OMEGAO=TOMEGA*DE2RA
XMO=TM*DE2RA
TEMP=TWOPI/XMNPDA/XMNPDA
XNO=TN*TEMP*XMNPDA

DO i00,I=1,MAXITR

ITER=ITER+I

INITIALIZE IDEEP TO 0, IE PERIOD < 225 MINUTES
IF PERIOD >= 225 MINUTES THEN SET IDEEP TO 1

IDEEP=O
AI= (XKE/XNO) **TOTHRD
TEMP=1.5*CK2* (3. *C (XINCL) **2-1. ) / (.-EO*EO) **I.5
DELI=TEMP/(A1*A1)
AO=AI*(i.-DEL1*(.5*TOTHRD+DEL1*(i.+134./81.*DELl)))

DELO=TEMP/(AO*AO)
XNODP=XNO/(1 . +DELO)
IF((TWOPI/XNODP/XMNPDA) .GE. .15625) IDEEP=1

IFLAG=I

IF (IDEEP.EQ.0) THEN
CALL SGP4 (IFLAG,TSINCE)

ELSE
CALL SDP4 (IFLAG,TSINCE)

ENDIF

• OBTAIN OSCULATING ELEMENTS FROM STATE
* CURRENT ITERATION OSCULATING ELEMENTS ARE PREFIXED WITH "Y"

* ASSIGN CONVERTED STATE TO EXTERNAL UNITS, KM & KM/S
* TO INPUT TO RV2OSC SUBROUTINE

TEMP=XKMPER/AE

B-4



CX=X*TEMP
CY=Y*TEMP
CZ=Z*T2E4P
TEMP=XKM~PER/AE*XMNPDA/86400.
Ql2=)TJDfl*TEMP

CYDOT=YDOr'*TEMP
CZDOT=ZDOT*T2E4P

CALL RV2OSC(CX,CY,CZ,CXDOT,CYDOT,CZDOT,YINCL,YNODE,YECC,YOMEGA,

1 YM, YN)

* CHECK FOR CONVERGENCE

* TEST FOR CONVERGENCE BY CHECKING MAX ABSOLUTE VALUES OF THE
* DELTA OF BOTH POSITION AND VELOCITY

TEMP=XKMPER/AE
DELTA(l) =(TX-X) *TEMP
DELTA(2)=(TY-Y) *TEMP
DELTA(3)= (TZ-Z) *TE]P
TEMP=XMPER/AE*XMNPDA/86400.
DELTA (4) =(TXDOT-XDOT) *TEM
DELTA (5) =(TYDOT-YDOT) *TEM
DELTA(6)= (TZDOT-ZDOT) *TEM

MXDEL1=ABS (DELTA(1))
NXDEL2=ABS(DELTA(4))
DO 90,J=2,3

IF(A3S (DELTA(J)) .GT.MXDELl) MXDEL1=ABS (DELTA(J))
IF(ABS(DELTA(J+3) ).GT.MXDEL1) MXDEL2=ABS(DELTA(J+3))

90 CONTINUE

IF ((MXDELl.LE.TOL1) .AND. (MXDEL2.LE.TOL2)) ICONV=1

IPRNT=0
ISTEP=1O
DO 95, K=1,ISTEP

IF (ITER.EQ.K*MAXITR/ISTEP) IPRNT=1
95 CONTINUE

IF (IPRNT.EQ.1) THEN
* OUTPUT ITERATION VALUES

WRITE(*,*) 'ITERATION: ',ITER

IFIEPE.)WRITE (*, * 'MDE:)G4
IF(IDEEP.EQ.1) WRITE(*,*) 'MODEL: SGP4'

WRITE(*,*) 'BSTAR: ',BSTAR*AE
WRITE(*,*) 'XINCL: ',XINCL/DE2RA, 'DEGREES'
WRITE(*,*) 'XNODEO: ',XNODEO/DE2RA, 'DEGREES'

WRITE(*,*) 'EO: ',EO
WRITE(*,*) 'OMEGAO: ',OMEGAO/DE2RA, 'DEGREES'

WRITE(*,*) 'XMO: ',XMO/DE2RA, ' DEGREES'
TEMP='IWOPI /XMPDA/XMNPDA
WRITE(*,*) 'XNO: ',XNO/TEMP/XNNPDA, ' REVS/DAY'
TEMP=XKMPER/AE
WRITE(*,*) 'X (KM): ',X*TEMP
WRITE(*,*) 'Y (KM): ',Y*TEP24
WRITE(*,*) 'Z (KM): ',Z*TEMP
TEMP=XKMPER/AE*XMNPDA/8 6400.
WRITE(*,*) 'XDOT (KM/S): ',XDOT*TEMP
WRITE(*,*) 'YDOT (KM/S): ',YDOT*TEMP
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WRITE(*,*) 'ZDOT (KM/S): ',ZDOT*TEMP
WRITE(*,*) 'DELTA X: ',DELTA(1)
WRITE(*,*) 'DELTA Y: ',DELTA(2)
WRITE(*,*) 'DELTA Z: ',DELTA(3)
WRITE(*,*) 'MXDELI: ',MXDELI
WRITE(*,*) 'DELTA XDOT: ',DELTA(4)
WRITE(*,*) 'DELTA YDOT: ',DELTA(5)
WRITE(*,*) 'DELTA ZDOT: ',DELTA(6)
WRITE(*,*) ' MXDEL2: ',MXDEL2
WRITE(*, *)

ENDIF

IF CONVERGED THEN END ITERATION

IF(ICONV.EQ.1) GOTO 110

IF NOT CONVERGED THEN MAKE THE NEXT GUESS AT ELEMENTS

XINCL=XINCL+ (TINCL-YINCL) *DE2RA
XNODEO=FMOD2P (XNODEO+ (TNODE-YNODE) *DE2RA)

EO=ABS (EO+ (TECC-YECC))

OMEGAO=FMOD2 P (OMEGAO+ (TOMEGA-YOMEGA) *DE2RA)
XMO=FMOD2P (XMO+ (TM-YM) *DE2RA)
TEMP=TWOPI/XMNPDA/XMNPDA
XNO=XNO+ (TN-YN) *TEMP*XMNPDA

100 CONTINUE
110 CONTINUE

IF(ICONV.EQ.1) THEN
WRITE(*,*) 'CONVERGED AFTER ',ITER,' ITERATIONS'
WRITE(*,*)

ELSE
WRITE(*,*) 'DID NOT CONVERGE AFTER' ,ITER,' ITERATIONS'
WRITE(*,*)

ENDIF

* OUTPUT THE STATE AFTER ADDING DELTA V
* IN UNITS OF KM AND KM/S LEAVING INTERNAL
* STATE VALUES IN INTERNAL UNITS

WRITE(*,*) 'STATE W/ DELTA V @ NEW EPOCH'
W R IT E (* ,* ) -------------- ---------------------------------
IF(IDEEP.EQ.0) WRITE(*,*) 'MODEL: SGP4'
IF(IDEEP.EQ.1) WRITE(*,*) 'MODEL: SDP4'
WRITE(*,*) 'EPOCH: ',EPOCH
WRITE(*,*) 'X (KM): ',X*XKMPER/AE
WRITE(*,*) 'Y (KM): ',Y*XKMPER/AE
WRITE(*,*) 'Z (KM): ',Z*XKMPER/AE
WRITE(*,*) 'XDOT (KM/S): ' ,XDOT*XKMPER/AE*XMNPDA/86400.
WRITE(*,*) 'YDOT (KM/S): ',YDOT*XKMPER/AE*XMNPDA/86400.
WRITE(*,*) 'ZDOT (KM/S): ',ZDOT*XKMPER/AE*XMNPDA/86400.
WRITE(*,*)

OUTPUT THE NEW MEAN ELEMENTS

WRITE (*, *) 'NEW MEAN ELEMENTS'
WRITE (*,*) -------------------

IF(IDEEP.EQ.0) WRITE(*,*) 'MODEL: SGP4'
IF(IDEEP.EQ.1) WRITE(*,*) 'MODEL: SDP4'
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WRITE(*,*) 'BSTAR: ',BSTAR*AE
WRITE(*,*) 'XINCL: ',XINCL/DE2RA, ' DEGREES'
WRITE(*,*) 1XNODEO: ',XNODEO/DE2RA, DEGREES'
WRITE(*,*) 'EO: ',EO
WRITE(*,*) 'OMEGAO: ',OMEGAO/DE2RA, DEGREES'
WRITE(*,*) 'XMO: ',XMO/DE2RA, ' DEGREES'
TEMP=TWOPI/XMNPDA/XMNPDA
WRITE(*,*) 'XNO: ',XNO/TEMP/XMNPDA,' REVS/DAY'
WRITE(*, *)

• IF THE ITERATION CONVERGED THEN
* PROPAGATE THE STATE FROM NEW EPOCH (MANEUVER TIME)
* TO NEW EPOCH + TF (MIN)
* IN STEPS OF DELT (MIN)

IF ((ICONV.NE.1).OR.(TS.EQ.TF)) STOP

TSINCE=0.

IFLAG=l

200 IF (IDEEP.EQ.0) THEN
CALL SGP4 (IFLAG,TSINCE)

ELSE
CALL SDP4 (IFLAG,TSINCE)

ENDIF

* OUTPUT THE STATE
* IN UNITS OF KM AND KM/S LEAVING INTERNAL
* STATE VALUES IN INTERNAL UNITS

WRITE(*,*) 'STATE @ ',TSINCE,' MINUTES MINUTES FROM EPOCH'
WRITE(*,*) -
WRITE(*,*) 'EPOCH: ',EPOCH
WRITE(*,*) 'X (KM): ',X*XKMPER/AE
WRITE(*,*) 'Y (KM): ',Y*XKMPER/AE
WRITE(*,*) 'Z (KM): ',Z*XKMPER/AE
WRITE(*,*) 'XDOT (KM/S): ',XDOT*XKMPER/AE*XMNPDA/86400.
WRITE(*,*) 'YDOT (KM/S): ',YDOT*XKMPER/AE*XMNPDA/86400.
WRITE(*,*) 'ZDOT (KM/S): ',ZDOT*XKMPER/AE*XMNPDA/86400.
WRITE(*, *)

TSINCE=TSINCE+DELT

IF((TSINCE .LE. TF).AND.(DELT.GT.0.)) GO TO 200

STOP
END

include 'sgp4.f'
include 9sdp4.f'
include 'deep.f'
include 'rv2osc.tf
include 'thetag. f
include 'fmod2p.f'
include 'actan.f'
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SUBROUTINE RV2OSC (RI, RJ, RKVI,VJ, VK,XINCL, XNODE, ECC, OMEGA, XM,XN)

* THIS SUBROUTINE TAKES ECI STATE VECTOR ELEMENTS X,Y,Z,VX,VY,VZ
* IN UNITS OF KM AND KM/S AND RETURNS OCSULATING ORBITAL ELEMENTS:

* XINCL: INCLINATION IN DEGREES
* XNODE: RIGHT ASCENSION OF ASCENDING NODE IN DEGREES
* ECC: ECCENTRICITY
* OMEGA: AGRUMENT OF PERIGEE IN DEGREES
* XM: MEAN ANOMOLY IN DEGREES
* XN: MEAN MOTION IN REVS/DAY

DATA XMU/398601.2/

PI=4.*ATAN(i.)

* CALCULATE THE MAGNITUDE OF POSITION (R) AND VELOCITY (V)
* AND THE MAGNITUDE OF THE POSITION VECTOR DOITED WITH THE
* VELOCITY VECTOR (RDDTV)

R=VMAG(RI,RJ,RK)
V=VMAG (VI,VJ,VK)
R[XYIV=DOT (RI, RJ, RK, VI, VJ, VK)

CALCULATE THE ANGULAR MOMENTUM VECTOR
AND ITS MAGNITUDE

CALL CROSS (RI,RJ,RK,VI,VJ,VK, HI,HJ,HK)
H=VMAG (HI,HJ,HK)

CALCULATE THE NODAL VECTOR AND ITS MAGNITUDE

XNVECI=-HJ
XNVECJ=HI
XNVECK=O.
XNMAG=VMAG (XNVECI, XNVECJ, XNVECK)

CALCULATE THE ECCENTRICITY VECTOR AND ITS MAGNITUDE (ECC)

ECCI=I./XMU* ((V*V-XMU/R) *RI-RDOTV*VI)

ECCJ=1 •/XMU* ((V*V-XMU/R) *RJ-RDOTV*VJ)
ECCK=1./XMU* ((V*V-XMU/R) *RK-RDOTV*VK)
ECC=VMAG (ECCI, ECCJ, ECCK)

CALCULATE THE INCLINATION (XINCL)

COSX=HK/H
XINCL=DEGREE (ACOS (COSX))

CALCULATE THE RIGHT ASCENSION OF ASCENDING NODE (XNODE)

COSY=XNVECI/XNMAG
XNODE=DEGREE (ACOS (COSX))
IF(XNVECJ.LE.O.) XNODE=360.-XNODE
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* CALCULATE THE ARGUMENT OF PERIGEE (OMEGA)

COSX=DXYI(XNVECI,XNVECJ,)GNVECK, ECCI,ECCJ,ECCK) /(XNMAG*ECC)
CMEGA=DEGREE (ACOS (COSX))
IF(ECCK.LE.0.) OMEGA =360.-OMEGA

* CALCULATE THE MEAN ANOMOLY (XM)

P=H*H/XMU

A=P/ (1-ECC*ECC)
ECOSE=1-R/A
ESINE=RDO'IV/SQRT (XMU*A)
E=ACTAN (ES INE, ECOSE)
XM=DEGREE (E-ESINE)
IF(lXM.LT.0.) XM=360+XM

* CALCULATE THE MEAN MOTION (XN)

PERIOD-2 . *PI*SQRT (A*A*A/XMU)
XN=86400 ./PERIOD

RETURN
END
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* SUBPROGRAMS USED BY RV2OSC ARE CONTAINED BELOW

* IN ADDITION TO THESE, RV20SC USES THE ACTAN FUNCTION

FUNCTION DOT(Xl,Yl,ZI,X2,Y2,Z2)
DOT=XI*X2+Yl*Y2+ZI*Z2
RETURN
END

FUNCTION VMAG(X,Y,Z)
VMAG=SQRT(X*X+Y*Y+Z*Z)
RETURN
END

FUNCTION DEGREE(X)
PI=4.*ATAN(I.)
DEGREE=X*180./PI
RETURN
END-

SUBROUTINE CROSS(XI,Y1,ZI,X2,Y2,Z2,X3,Y3,Z3)
X3=Yl*Z2-ZI*Y2
Y3=-(XI*Z2-ZI*X2)
Z3=XI*Y2-YI*X2
RETURN
END
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Appendix C: INPUT AND OUTPUT DATA

C.1 Input File Description.

The input file was a five-line data set with format as given in Table C. 1.

Table C.1 Input Data File Format

Line Variable Name

2 DXDOT DYDOT DZDOT ___ _________

1 TS_____

3 EPYR EPDAY XNDT20 XNDD60 BSTAR
4 XINCL XNODE EO j OMEGAO XM0 XNO5 MAXITR TOLl TOL2

The variable names are defined and the associated units are given in Table C.2.

Table C.2 Input Values

Variable Name Definition Units
TS Maneuver time minutes past epoch

DXDOT Velocity change in X direction kilometers/second
DYDOT V__eloty change in Y direction kilometers/second
DZDOT Velocity change in Z direction kilometers/second
EPYR Last two digits of epoch year

EPDAY Epoch Day
XNDT20 One half of the first time derivative of mean motion reyolutions/day/day
XNDD60 One sixth of the second time derivative of mean motion revolutions/dayday/day
BSTAR Drgcoefficient 1/earth radii
XINCL Mean orbital inclination
XNODE Mean right ascension of the ascending node degrees

EO Mean eccentricity --------. ... ...
OMEGAO Mean argument of perigee degrees

XMO Mean mean anamoly degrees
XNO Mean mean motion revolutions/day

MAXITR Maximum number of iterations
TOLl Positional convergence criterion kilometers
TOL2 Velocity convergence criterion kilometers/second
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C.2 Sample Input and Output.

C.2.1 Converging (Run 1).

Input:

0. 0. 0.
0. 0. 0.
80. 275.98708465 .00073094 .13844E-3 .66816E-4
72.8435 115.9689 .0086731 52.6988 110.5714 16.05824518
1000 1.D-5 1.D-5

Output

INPUT ECHO

TS: 0.
DXDOT: 0.
DYDOT: 0.
DZDOT: 0.
EPYR: 80.000000000000000000000000000000000
EPDAY: 275.98708464999999999999999999999999
BSTAR: 6.6816000000000D-05
XINCL: 72.843500000000
XNODEO: 115.96890000000
EO: 8.6731000000000D-03
OMEGAO: 52.698800000000
XMO: 110.57140000000
XNO: 16.058245180000
MAXITR: 1000
TOLl: 1.OOOOOOOOOOOOOD-05
TOL2: 1.OOOOOOOOOOOOOD-05

STATE W/O DELTA V @ T = EPOCH + 0. MINUTES:

EPOCH : 80275.987084650000000000000000000000
TSINCE (MIN): 0.
X (KM) : 2328.9706719836
Y (KM): -5995.2208387137
Z (KM): 1719.9707009129
XDOT (KM/S): 2.9120722772560
YDOT (KM/$): -0.98341535999325
ZDOT (KM/S): -7.0908169483094

STATE W/ DELTA V @ T = NEW EPOCH

MODEL: SGP4
X (KM): 2328.9706719836
Y (KM): -5995.2208387137
Z (KM): 1719.9707009129
XDXYT (KM/S): 2.9120722772560
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YDOT (KM/S): -0.98341535999325
ZDOT (KMI/S) -7.0908169483094
OSCULATING ELEMENTS:
EPOCH: 80275.987084650000000000000000000000
TSINCE (MIN): 0.
INCL (DEGREES): 72.853850793758
NODE (DEGREES): 115.96229565319
ECC: 9.6688686502438D-03
OMEGA (DEGREES): 59.407389985514
M (DEGREE$): 103.834335347262
N (REV/DAY): 16.039008453174

CONVERGED AFTER 8 ITERATIONS

STATE @ T = 80275.987084650000000000000000000000

MODEL: SGP4
X (KM): 2328.9706707997
Y (KM): -5995.2208359032
Z (KM): 1719.9707003254
XDOT (KM/S): 2.9120722786609
YDOT (KM/S): -0.98341536059274
ZDOT (KM/S): -7.0908169515364

COMPUTED MEAN ELEMENTS

MODEL: SGP4
EPOCH: 80275.987084650000000000000000000000
BSTAR: 6.6816000000000D-05
XINCL: 72.843499999930 DEGREES
XNODEO: 115.96889999989 DEGREES
EO: 8.6730998226599D-03
OMEGAO: 52.698802777752 DEGREES
XMO: 110.57139722179 DEGREES
XNO: 16.058245180245 REVS/DAY

C.2.2 Non-converging (Run 6).

0. 0. 0.
0. 0. 0.
94 027.71283080 .00010322 .OOOOOE-0 .13245E-3
51.6150 171.3210 .0004383 242.7692 117.2855 15.59769565
10000 I.E-5 1E-5

INPUT ECHO

TS: 0.
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DXDOT: 0.
DYDOT: 0.
DZDOT: 0.
EPYR: 94.000000000000000000000000000000000
EPDAY: 27.712830800000000000000000000000000
BSTAR: 1.3245000000000D-04
XINCL: 51.615000000000
XNODEO: 171.32100000000
EO: 4.3830000000000D-04
OMEGAO: 242.76920000000
XMO: 117.28550000000
XNO: 15.597695650000
MAXITR: 10000
TOLl: 1.OOOOOOOOOOOOOD-05
TOL2: 1.OOOOOOOOOOOOOD-05

STATE W/O DELTA V @ T = EPOCH + 0. MINUTES:

EPOCH : 94027.712830799999999999999999999998
TSINCE (MIN): 0.
X (KM): . -6691.0583844454
Y (KM): 1021.3614767624
Z (KM): 5.8265559592820D-03
XDOT (KM/S): -0.71533823038558
YDOT (KM/S): -4.7105374070153
ZDOT (KM/S): 6.0189300496620

STATE W/ DELTA V @ T = NEW EPOCH

MODEL: SGP4
X (KM): -6691.0583844454
Y (KM): 1021.3614767624
Z (KM): 5.8265559592820D-03
XDOI (KM/S): -0.71533823038558
YDOT (KM/S): -4.7105374070153
ZDOT (KM/S): 6.0189300496620
OSCULATING ELEMENTS:
EPOCH: 94027.712830799999999999999999999998
TSINCE (MIN): 0.
INCL (DEGREES): 51.635116093688
NODE (DEGREES): 171.32099986061
ECC: 8.0636571495733D-04
OMEGA (DEGREES): 36.246775600803
M (DEGREES): 323.80789458967
N (REV/DAY): 15.575233183472

ITERATION: 1000

MODEL: SGP4
BSTAR: 1.3245000000000D-04
XINCL: 51.614999975422 DEGREES
XNODEO: 171.32103979104 DEGREES
EO: 3.2734297529344D-04
OMEGAO: 359.70499516529 DEGREES
XMO: 0.34969896155076 DEGREES
XNO: 15.597710222807 REVS/DAY
X (KM): -6687.0312717373
Y (KM): 1024.0383009368
Z (KM): -4.1046931858184
XDOT (KM/S): -0.71865926437066
YDOT (KM/S): -4.7125757148652
ZDOT (KM/S): 6.0221085863692
DELTA X: -4.0271127081396
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DELTA Y: -2.6768241743931
DELTA Z: 4.1105197417777
MXDELI: 4.1105197417776855317583795113023371
DELTA XDOT: 3.3210339850807D-03
DELTA YDCZY: 2.0383078498944D-03
DELTA ZDOT: -3.1785367071631D-03
MXDEL2: 3.3210339850806716924247474764797516Q-003

ITERATION: 2000

MODEL: SGP4
BSTAR: 1.3245000000000D-04
XINCL: 51.614999975422 DEGREES
XNODEO: 171.32103979104 DEGREES
EO: 3.2734297529289D-04
OMEGAO: 359.70499516532 DEGREES
XMO: 0.34969896151364 DEGREES
XNO: 15.597710222807 REVS/DAY
X (KM): -6687.0312717373
Y (KM): 1024.0383009369
Z (KM): -4.1046931860445
XDOT (KM/S): -0.71865926437098
YDOT (KM/S): -4.7125757148652
ZDOT (KM/S): 6.0221085863692
DELTA X: -4.0271127081594
DELTA Y: -2.6768241745711
DELTA Z: 4.1105197420038
MXDEL1: 4.1105197420038237510198086965829134
DELTA XDOT: 3.3210339854026D-03
DELTA YDOT: 2.0383078498435D-03
DELTA ZDOT: -3.1785367071594D-03
MXDEL2: 3.3210339854025505007539820212514314Q-003

ITERATION: 3000

MODEL: SGP4
BSTAR: 1.3245000000000D-04
XINCL: 51.614999975422 DEGREES
XNODEO: 171.32103979104 DEGREES
EO: 3.2734297529288D-04
OMEGAO: 359.70499516529 DEGREES
XMO: 0.34969896153871 DEGREES
XNO: 15.597710222807 REVS/DAY
X (KM): -6687.0312717372
Y (KM): 1024.0383009374
Z (KM): -4.1046931865628
XDIOT (KM/S): -0.71865926437172
YDOT (KM/S): -4.7125757148651
ZDOT (KM/S): 6.0221085863692
DELTA X: -4.0271127082288
DELTA Y: -2.6768241749757
DELTA Z: 4.1105197425220
MXDELI: 4.1105197425220421081348831648938358
DELTA XDOT: 3.3210339861461D-03
DELTA YDOT: 2.0383078497314D-03
DELTA ZDOT: -3.1785367071609D-03
MXDEL2: 3. 3 2 1 03 3 9 8 61 4 6 07 16 3 08350082925926472Q-003

ITERATION: 4000

MODEL: SGP4
BS17AR: 1.3245000000000D-04
XINCL± 51.614999975422 DEGREES
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XNODEO: 171.32103979104 DEGREES
ED: 3.2734297529298D-04
OMEGAO: 359.70499516530 DEGREES
XMO: 0.34969896151944 DEGREES
XNO: 15.597710222807 REVS/DAY
X (KM): -6687.0312717371
Y (KM): 1024.0383009378
Z (KM): -4.1046931870904
XDOT (KM/S): -0.71865926437248
YDOT (KM/S): -4.7125757148649
ZDOT (KM/S): 6.0221085863692
DELTA X: -4.0271127082911
DELTA Y: -2.6768241753886
DELTA Z: 4.1105197430497
MXDEL1: 4.1105197430496884791750744625460356
DELTA XDOT: 3.3210339869009D-03
DELTA YDOT: 2.0383078496163D-03
DELTA ZDOT: -3.1785367071624D-03
MXDEL2: 3.3210339869009335156402329403135809Q-003

ITERATION: 5000

MODEL: SGP4
BSTAR: 1.3245000000000D-04
XINCL: 51.614999975422 DEGREES
XNODEO: 171.32103979104 DEGREES
EO: 3.2734297529314D-04
OMEGAO: 359.70499516537 DEGREES
XMO: 0.34969896147373 DEGREES
XNO: 15.597710222807 REVS/DAY
X (KM): -6687.0312717374
Y (KM): 1024.0383009362
Z (KM): -4.1046931850976
XIXDT (KM/S): -0.71865926436962
YDOT (KM/S): -4.7125757148654
ZDOT (KM/S): 6.0221085863692
DELTA X: -4.0271127080476
DELTA Y: -2.6768241738270
DELTA Z: 4.1105197410569
MXDELI: 4.1105197410568878879644216794986278
DELTA XDOT: 3.3210339840426D-03
DELTA YDOT: 2.0383078500515D-03
DELTA ZDOT: -3.1785367071631D-03
MXDEL2: 3.3210339840425637247811607721814653Q-003

ITERATION: 6000

MODEL: SGP4
BSTAR: 1.3245000000000D-04
XINCL: 51.614999975422 DEGREES
XNODEO: 171.32103979104 DEGREES
EO: 3.2734297529336D-04
OMEGAO: 359.70499516532 DEGREES
XMO: 0.34969896151489 DEGREES
XNO: 15.597710222807 REVS/DAY
X (KM): -6687.0312717372
Y (KM): 1024.0383009369
Z (KM): -4.1046931860163
XDOT (KM/S): -0.71865926437094
YDOT (KM/S): -4.7125757148652
ZDOT (KM/S): 6.0221085863692
DELTA X: -4.0271127081651
DELTA Y: -2.6768241745477
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DELTA Z: 4.1105197419756
MXDELI: 4.1105197419755512555639143101871014
DELTA XDOT: 3.3210339853629D-03
DELTA YDOT: 2.0383078498538D-03
DELTA ZDOT: -3.1785367071653D-03
MXDEL2: 3.3210339853629033957105320951086469Q-003

ITERATION: 7000

MODEL: SGP4
BSTAR: 1.3245000000000D-04
XINCL: 51.614999975422 DEGREES
XNODEO: 171.32103979104 DEGREES
EO: 3.2734297529316D-04
OMEGAO: 359.70499516529 DEGREES
XMO: 0.34969896154274 DEGREES
XNO: 15.597710222807 REVS/DAY
X (KM): -6687.0312717372
Y (KM): 1024.0383009369
Z (KM): -4.1046931860163
XDOT (KM/S): -0.71865926437094
YDOT (K/S): -4.7125757148652
ZDOT (KM/S): 6.0221085863692
DELTA X: -4.0271127081651
DELTA Y: " -2.6768241745477
DELTA Z: 4.1105197419756
MXDELI: 4.1105197419755512555639143101871014
DELTA XDOT: 3.3210339853639D-03
DELTA YDOT: 2.0383078498531D-03
DELTA ZDOT: -3.1785367071646D-03
MXDEL2: 3.3210339853639177752631095330571043Q-003

ITERATION: 8000

MODEL: SGP4
BSTAR: 1.3245000000000D-04
XINCL: 51.614999975422 DEGREES
XNODEO: 171.32103979104 DEGREES
EO: 3.2734297529279D-04
OMEGAO: 359.70499516529 DEGREES
XMO: 0.34969896154848 DEGREES
XNO: 15.597710222807 REVS/DAY
X (KM): -6687.0312717373
Y (KM): 1024.0383009368
Z (KM): -4.1046931858938
XDOr (KM/S): -0.71865926437076
YDOIT (KM/S): -4.7125757148652
ZDOT (KM/S): 6.0221085863692
DELTA X: -4.0271127081410
DELTA Y: -2.6768241744532
DELTA Z: 4.1105197418531
MXDELI: 4.1105197418530678987735882401466370
DELTA XEOT: 3.3210339851879D-03
DELTA YDOT: 2.0383078498738D-03
DELTA ZDOT: -3.1785367071609D-03
MXDEL2: 3.3210339851879031904113848128190511Q-003

ITERATION: 9000

MODEL: SGP4
BSTAR: 1.3245000000000D-04
XINCL: 51.614999975422 DEGREES
XNODEO: 171.32103979104 DEGREES
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EO: 3.2734297529317D-04
OMEGAO: 359.70499516535 DEGREES
XMO: 0.34969896148073 DEGREES
XNO: 15.597710222807 REVS/DAY
X (KM): -6687.0312717372
Y (KM): 1024.0383009371
Z (KM): -4.1046931862848
XDOT (KM/S): -0.71865926437132
YDOT (KM/S): -4.7125757148651
ZDUIT (KM/S): 6.0221085863692
DELTA X: -4.0271127081934
DELTA Y: -2.6768241747582
DELTA Z: 4.1105197422441
MXDEL1: 4.1105197422440875598681486735586077
DELTA XDOT: 3.3210339857455D-03
DELTA YDOT: 2.0383078497926D-03
DELTA ZDOT: -3.1785367071631D-03
MXDEL2: 3.3210339857455439295519372677745196Q-003

ITERATION: 10000

MODEL: SGP4
BSTAR: 1.3245000000000D-04
XINCL: 51.614999975422 DEGREES
XNODEO: 171.32103979104 DEGREES
EO: 3.2734297529345D-04
OMEGAO: 359.70499516539 DEGREES
XMO: 0.34969896145111 DEGREES
XNO: 15.597710222807 REVS/DAY
X (KM): -6687.0312717373
Y (KM): 1024.0383009369
Z (KM): -4.1046931859644
XDOT (KM/S): -0.71865926437086
YDOT (KM/S): -4.7125757148652
ZDOT (KM/S): 6.0221085863692
DELTA X: -4.0271127081566
DELTA Y: -2.6768241745073
DELTA Z: 4.1105197419237

=XDELI: 4.1105197419237304856665105035062879
DELTA XDOT: 3.3210339852855D-03
DELTA YDOT: 2.0383078498642D-03
DELTA ZDOT: -3.1785367071631D-03
MXDEL2: 3.3210339852855455707036913537422151Q-003

DID NOT CONVERGE AFTER 10000 ITERATIONS
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